Science
Related: About this forumThe lithium/carbon dioxide battery.
The paper to which I'll refer in this post is this one: Boosted Reaction Kinetics of LiCO2 Batteries by Atomic Layer-Deposited Mo2N on Hydrogen Substituted Graphdiyne Junxiang Zhang, Guicai Qi, Jianli Cheng, Paula Ratajczak, Zhuanpei Wang, Francois Beguin, and Bin Wang ACS Sustainable Chemistry & Engineering 2023 11 (45), 16185-16193.
My interest in this system does not at all contradict my frequent statement of the second law of thermodynamics in this form: "Storing energy wastes it."
Nevertheless, I do use batteries; my recently wrecked car was a hybrid car; I am looking to replace it; I own a battery powered lawnmower, and just purchased a battery powered snow blower. These batteries contain lithium, manganese, nickel and cobalt, the latter having a high moral cost, since cobalt is largely mined by modern day slaves.
Disturbed as I am by my moral hypocrisy, I do read a fair number of papers on batteries in my general reading, but this one really caught my eye because it's cobalt free, and because it reduces carbon dioxide to elemental carbon.
From the introduction:
In recent years, several kinds of cathode catalysts, including carbon materials, (14−20) noble metals, (10,12,21−26) transition metals and their compounds, (27−36) metalorganic frameworks, (37,38) and covalent organic frameworks, (39,40) have been developed and improved the electrochemical performance of LiCO2 batteries. Among them, integrating an efficient metal catalyst into highly conductive carbon have shown significantly facilitated kinetics in LiCO2batteries as well as other gas-involved catalytic reactions. (29,32,36) A variety of carbon/metal composite catalysts, such as ultrathin Ir nanosheets on N-doped carbon fibers, (21) RuO2 on carbon nanotubes (CNTs), (22) ultrafine Ru nanoparticles on activated carbon nanofibers, (23) ZnS quantum dots on N-doped reduced graphene oxide(GO), (27) adjacent Co single atom/GO, (35) RuCu nanoparticles on graphene, (41) Mo2C/CNTs, (42) RuCo nanoparticles on carbon nanofibers, (43) etc., have been prepared and showed outstanding catalytic activity and remarkably reduced the voltage gap between CO2 reduction and evolution process. However, reported carbon/metal composite catalysts have several drawbacks: weak bonding strength between carbon and metal catalysts, uneven distribution of the nanoparticles, and limited catalyst utilization, leading to the formation of large aggregates and high loading but partly inefficient catalytic behavior. Moreover, the loading amount, crystal structure, and catalytic sites of metal catalysts are difficult to precisely regulate to further improve and optimize their catalytic activity.
The emerged graphdiyne (GDY) material is a novel allotrope of carbon (44) which contains both sp and sp2 hybridized carbon atoms in the carbon framework and possesses a large specific surface area, uniform pore structure, and excellent electrochemical stability. Different from traditional carbon materials like graphene and CNTs, it was suggested that the coexistence of sp and sp2 carbon atoms is favorable for chelating metal atoms and facilitating the charge transfer between metal atoms and GDY. (45) These merits make GDY an ideal substrate for anchoring metal catalysts with suppressed aggregation. So, GDY/metal composite catalysts such as GDY-WS2 (46) and MoS2/N-GDY (47) have shown efficient catalytic activity in hydrogen evolution reaction (HER). In addition, single metal atoms can be stably anchored and evenly dispersed on GDY, such as Ni(Fe)/GDY, (48) Pd/GDY, (49) and Mo/GDY, (50) with highly efficient catalytic activity to the HER and the nitrogen reduction reaction. At the same time, GDY can be synthesized through a copper-catalyzed CC cross-coupling reaction, which makes it possible to precisely adjust its morphology and chemical properties, including conductivity, pore structure, and affinity for metal atoms, thereby conveniently optimizing the catalytic activity of the GDY/metal catalyst...
The authors show how to address some of the kinetic drawbacks of these batteries by the plasma assisted atomic layer deposition of a molybdenum nitride catalyst.
This hardly ready for prime time, and it will certainly do nothing to make so called "renewable energy" a significant viable and sustainable form of energy, which it has not been, is not now, and never will be, batteries or no batteries.
Nevertheless a system that reduces carbon dioxide to elemental carbon should always be of interest.
In this sense it's a cool paper.
Earlier I wrote about such a system (which I view as a tool to make carbon based materials and electrodes for the FFC and Hall-Heroult reduction of ores to metals) here: Electrolysis of Lithium-Free Molten Carbonates
I see a lot of potential in this molten carbonate system, assuming it isn't lost in the shuffle.
Have a nice day tomorrow.